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Abstract. This paper studies the form of stationary breather modes in discrete generalized
nonlinear Klein–Gordon equations, with symmetric and non-symmetric potential energy
functions. In the case of static breathers, the discrete nature of the spatial dimension has a
much more subtle effect on the breather than the moving breather mode. This effect is analysed
using a variety of approximating partial differential equations, whose solutions are found by
using an extended multiple-scales asymptotic approach to reduce the equation to a nonlinear
Schr̈odinger equation at leading order and more complex equations at higher order, where
secularity conditions are required to fully specify the solution. As well as the much studied
discrete sine–Gordon equation, the methods are demonstrated on a discrete nonlinear Klein–
Gordon equation with second-neighbour interactions and non-symmetric on-site potential. New
partial differential equations which approximate these lattice systems are also proposed and
analysed.

1. Introduction

The existence of breathers in the discrete sine–Gordon equation has been proven by MacKay
and Aubry [6] and more recently some ‘practical’ stability results have been derived by
Bambusi [1]. However, Konwentet al [5] have shown that modified systems can have
different properties and exhibit less straightforward behaviour.

The differences between breathers in the sine–Gordon (SG) and discrete sine–Gordon
systems (DSG) were explored by Remoissenet [7]. In that paper a leading-order asymptotic
expansion was used to analyse moving breathers and the results applied to a specific example.
Here we shall study stationary breathers. Larger amplitude breathers in the DSG system
are observed to be pinned to a lattice site, it is only small amplitude breathers which move
freely through the lattice. This has been observed in the numerical work of Dauxois and
Peyrard [2], and some analytical work has started to elucidate the reasons for this pinning
[14]. To understand this pinning effect it is important to know in what ways a discrete
spatial dimension affects a breather’s properties.

Hence it is of interest to find the difference in shape between breathers in continuous
and discrete systems. The work of Remoissenet [7] shows no difference between the two
for static breathers, since in this case the differences occur at a higher order than for moving
breathers. The aim of this paper is to perform the asymptotic reduction of the equation for
stationary breathers to a higher order to find the difference in shape.

† E-mail address: jonathan.wattis@nottingham.ac.uk
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The results are applied to an example system of a coupled pair of chains, each of which
has nearest-neighbour and second-neighbour interactions. The chains considered are parallel
to each other, connected by nonlinear springs and a new interaction—that of diagonal linear
springs. To analyse the system’s dynamics, a transformation is used which uncouples the
equations into a linear differential-difference equation and a discrete nonlinear Klein–Gordon
system with second-neighbour interactions. This latter problem—an infinite set of ordinary
differential equations—is approximated by a variety of partial differential equations, and
ultimately solved using multiple-scales techniques to give a breather solution which has a
component caused specifically by the the discrete nature of the underlying system. Higher-
order, multiple-scales methods require the use of secularity conditions to solve a hierarchy
of equations generated by higher-order, multiple-scales analysis.

A variety of possible partial differential equations (PDEs) approximating the system of
ordinary differential equations are suggested. These are generated using function theoretic
methods which have successfully been applied to lattices of Fermi–Pasta–Ulam (FPU) type.
For each approximating equation a dispersion relation is calculated to show how accurately
(or otherwise) the equation replicates the response of the lattice to small-amplitude linear
waves.

The remainder of this section introduces the systems studied and some of their basic
properties. In section 2 we show how to form new approximate PDEs which imitate the
behaviour of the DSG system. Section 3 shows that breather solutions can be found for
these systems, which correspond to breather solutions for the DSG system. The second part
of this paper applies these methods to a more general nonlinear Klein–Gordon lattice: in
section 4 a variety of PDEs are derived which approximate the lattice; and the solution is
derived in section 5. Finally, a discussion of our results is given in section 6.

1.1. Derivation of the DSG equation

The DSG equation can be derived from the Hamiltonian

H =
∑
n

1
2φ̇

2
n + 1

2(φn+1− φn)2+ 02(1− cosφn) (1.1)

which models a lattice of particles with positionsφn(t) each interacting with its nearest
neighbour via a linear spring and each experiencing a nonlinear ‘on-site’ potential with
energy02(1− cosφn). Thus the equations of motion are

φ̈n = φn+1− 2φn + φn−1− 02 sinφn. (1.2)

This system of ordinary differential equations has received much study, since it occurs
naturally as a model for many physical processes where the underlying spatial structure is
inherently discrete. Its continuum counterpart, the SG equation

∂2φ

∂t2
= ∂2φ

∂x2
− 02 sinφ (1.3)

is an integrable system and can be derived from the Hamiltonian densityH = 1
2φ

2
t +

1
2φ

2
x + 02(1− cosφ). Both the SG and DSG equations are widely studied, but the discrete

equation (1.2) is not integrable and thus many of the mathematical tools used in the study
of the SG equation (1.3) are not available to those wishing to analyse the effects that the
discrete nature of the spatial dimension has on the kinetics of (1.2).

If we look at the behaviour of small amplitude linear waves in each of these systems,
we find some of the differences between continuum and discrete equations. Substituting
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a wave of the formφn(t) = ε exp i(kn − ωt), with ε � 1, then we find that in the DSG
equation

ω2
DSG= 02+ 4 sin2( 1

2k) (1.4)

whereas for the continuous SG equation

ω2
SG= 02+ k2. (1.5)

The continuous case has a minimum frequency, but no maximum, whereas the discrete
equation has a finite band of frequencies:ω must lie between0 and

√
(02+ 4).

If we replace the discrete spatial variablen by the continuous variablex and then
expand δ2

n, the centred second spatial difference of (1.2) in a Taylor series, we find
δ2
n = ∂2

x + 1
12∂

4
x + · · · , and hence obtain the equation

φtt − φxx − 1
12φxxxx − · · · + 02 sinφ = 0. (1.6)

Rescaling the independent variables with0, by τ = 0t , ξ = 0x, leads to the equation

φττ − φξξ + sinφ = 1
120

2φξξξξ +O(04). (1.7)

So, in the limit0 → 0, the SG equation is approached. However, for any0 > 0, there
is always a value ofk so large thatωSG is larger than the maximum frequency allowed in
the DSG equation. In a later section, we shall show that it is possible to construct partial
differential equations which approximate the DSG equation, and also have the behaviour
that linear waves only occupy a finite band of frequencies.

1.2. Generalized Klein–Gordon lattice

We shall also study a lattice system which comes from modelling two coupled chains of
atoms. The lattice we consider is a generalization of a model for DNA.

We assume that each atom on each chain has harmonic interactions with its nearest
neighbours and with its second neighbours on the same chain. At rest, atoms are spaced
equidistantly along each chain, with the same spacing on each chain. The chains are
parallel and coupled by both linear and nonlinear springs; an atom in the first chain has a
nonlinear interaction with a corresponding atom in the other chain, and a linear interaction
with the atom either side of this—a diagonal interaction. This is perhaps more clearly seen
in figure 1, where the coils represent linear springs, and the hollow rectangles mark the
nonlinear springs. In forming kinetic equations for the motion of such a lattice, we assume
that all atoms have unit mass, and the spring constant for nearest-neighbour interactions
is f , whilst that for second neighbours isg and for the diagonal interactionsh. The energy
stored in the nonlinear springs will be denoted by the functionV (xn − yn), where the
displacements of atoms on the chains is given byxn, yn. In general,V (φ) will not be an
even function, and since our analysis does not rely on any numerical work, no assumptions
will be made on the form ofV other than that it possesses a Taylor series.

The Hamiltonian is then

H =
∑
n

1
2 ẋ

2
n + 1

2 ẏ
2
n + 1

2f (xn+1− xn)2+ 1
2f (yn+1− yn)2+ 1

2g(xn+2− xn)2

+ 1
2g(yn+2− yn)2+ 1

2h(yn+1− xn)2+ 1
2h(xn+1− yn)2+ V (xn − yn)

(1.8)
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Figure 1. A diagram showing connectivity of the lattice chain under consideration. Each bullet
point represents a node and boxes represent nonlinear springs, all other connections being linear
springs.

which generates the equations of motion

ẍn = f (xn+1− 2xn + xn−1)+ g(xn+2− 2xn + xn−2)+ h(yn+1− 2xn + yn−1)

−V ′(xn − yn)
ÿn = f (yn+1− 2yn + yn−1)+ g(yn+2− 2yn + yn−2)+ h(xn+1− 2yn + xn−1)

+V ′(xn − yn). (1.9)

The transformationψn = xn+yn, φn = xn−yn enables these two equations to be separated
into a linear equation for the summed displacements and a nonlinear Klein–Gordon equation
with second-neighbour interactions for the differences in displacements of the two chains:

ψ̈n = (f + h)(ψn+1− 2ψn + ψn−1)+ g(ψn+2− 2ψn + ψn−2)

φ̈n = (f − h)(φn+1− 2φn + φn−1)+ g(φn+2− 2φn + φn−2)− 2V ′(φn)− 4hφn. (1.10)

Thus the effect of the springs forming diagonal connections can be removed by redefining
the nearest-neighbour interaction spring constants, and making a minor modification to the
nonlinear interaction potentialV (φ). We shall assume that for small-amplitude disturbances,
2V ′(φ)+ 4hφ ∼ 02φ + higher-order terms.

We need to analyse the dispersion relations to see what values off, g, h and 0 are
allowable. Since the equation forψn is linear, we assume a travelling-wave solution of the
form ψn = ei(kn−ωt). The dispersion relation is then

ω2
ψ = 4(f + h+ 4g cos2( 1

2k)) sin2( 1
2k). (1.11)

Thus for stability of the zero-solution ground state, we requireh+f > 0 (from k = π )
and h + f + 4g > 0 (from k → 0). These are entirely reasonable conditions since in
most physical systems we would expect nearest-neighbour interactions to be stronger than
second-neighbour or diagonal interactions.

The dispersion relation forφ is

ω2
φ = 02+ 4(f − h+ 4g) sin2( 1

2k)− 16g sin4( 1
2k). (1.12)

From k = π/2 we get the requirementf − h > − 1
40

2. The dispersion relation gives real
frequencies for allg > − 1

4|f − h|. (For certain combinations of parameter values outside
this limit the equation is still well-posed.)

This model opens up the possibility of a new form of discrete Klein–Gordon equation,
where the central difference term has the opposite sign from that expected in continuum
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systems. For example, if we takeg = 0, h = 1, andf = 0 then the equation forψ is well-
posed, and the dispersion relation forφ implies that we needV ′′(0) > 0 for well-posedness.
However, the resulting equation

φ̈n = −φn+1+ 2φn − φn−1− V ′(φn) (1.13)

has no obvious well-posed continuum approximation.
For simplicity let us consider the case whereV ′(φ) is an odd function; we make the

substitutionηn = (−1)nφn, to obtain

η̈n = ηn+1− 2ηn + ηn−1− V ′(ηn)+ 4ηn (1.14)

which has the dispersion relationω2
η = V ′′(0)−4+4 sin2

(
1
2k
)
, so that providedV ′′(0) > 4

the PDE is well-posed. A continuum approximation of the equation is possible

∂2η

∂t2
= ∂2η

∂x2
− V ′(η)+ 4η (1.15)

which also has a well defined dispersion relationω2
η,cts= V ′′(0)− 4+ k2, with exactly the

same condition on well-posedness. Thus, in cases where the sign of the spatial difference is
reversed, there are solutions which are similar to breathers, but where adjacent atoms have
displacements in opposite directions.

2. PDE approximations to the DSG system

In this section we derive new partial differential equations which approximate the DSG
system. The similarities and differences between the approximations and the fully discrete
system will be outlined, particularly in the behaviour of linear waves in these systems. In
the next section, we shall show how breather solutions are found from the approximations.

We exploit the technique used in earlier papers where the second difference operator is
approximated using ratios of polynomials—a technique also known as Padé approximation.
Here, however, instead of forming expansions in terms of the ratio of two polynomials
in a variable, the polynomials will be functions of the differential operator,∂x := ∂/∂x.
Identical results can be obtained by taking the Fourier transform inx, then performing a
Pad́e approximation of a function in terms of the transform variable before inverting the
transform. The method presented here simply requires less manipulation. Such a technique
was used successfully in approximating the travelling-wave solution of the FPU chain [3, 10],
the chain with second-neighbour interactions [12], and a two-dimensional lattice [11].

Various forms of continuum approximations are open to us, although only the standard
SG equation is second order. All the new approximations take the form of higher-order
PDEs. We have already noted that the dispersion relation for this equation is significantly
different to that for the DSG equation. There are three approximations which lead to
fourth-order PDEs described here, all based on Padé approximations of the centred second
difference operator.

2.1. (4,0) Pad´e approximation

This is the simplest of the three, and really only a Taylor approximation of the difference
operatorδ2

n ∼ ∂2
x + 1

12∂
4
x . The partial differential equation it generates is

φtt − φxx + 02 sinφ = 1
12φxxxx (2.1)

with dispersion relation

ω2 = 02+ k2− 1
12k

4. (2.2)
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This has a minimum atk = 0 and a maximum (atk = √6)—qualitatively the same
as the DSG equation which rises to a maximum atk = π ; but for values ofk above√

6, the dispersion relation (2.2) decreases through zero, and becomes negative. Thus
the zero solution of the partial differential equation (2.1) is unstable to high-frequency
perturbations—in this respect it is not a good approximation of the lattice.

Equation (2.1) can be derived from a Lagrangian or Hamiltonian(L = 1
2φ

2
t + 1

2φ
2
x −

1
24φ

2
xx − 02(1− cosφ)).

2.2. (2,2) Pad´e approximation

Here the difference operator is approximated byδ2
n ∼ (1− 1

12∂
2)−1∂2

x , which generates the
partial differential equation

φtt = φxx − 02 sinφ + 1
12φxxtt + 1

120
2(φxx cosφ − φ2

x sinφ). (2.3)

Although the DSG system is Lagrangian, and the (4,0) Padé approximation has a Lagrangian
structure, no Lagrangian has been found for this equation. The dispersion relation for (2.3)
is

ω2 = 02+ k2+ 1
120

2k2

1+ 1
12k

2
. (2.4)

This remains positive for all values ofk, has a minimum atk = 0 (of ω = 0) and a
maximum ask→∞ (whereω→√(02+12)). Thus this has the right physical properties
of a finite band of linear frequency modes and shows the stability of the zero solution.

2.3. (4,2) Pad´e approximation

This approximation

δ2
n ∼

[
1+ 1

20∂
2
x

1− 1
30∂

2
x

]
∂2
x +O(∂8

x ) (2.5)

is sixth order accurate in∂x , yet still provides a fourth-order PDE

φtt = φxx − 02 sinφ + 1
20φxxxx + 1

30φxxtt + 1
300

2(φxx cosφ − φ2
x sinφ). (2.6)

As for the (2,2) Pad́e approximation, no Lagrangian has been found for this case. The
dispersion relation for (2.6) is

ω2 = 02+ k2− 1
20k

4+ 1
300

2k2

1+ 1
30k

2
(2.7)

which becomes negative for largek, demonstrating unphysical behaviour in that the zero
solution is unstable to linear modes with high wavenumbers. For smallerk, (2.7) will give
a better approximation to the shape of the DSG dispersion relation. It has a maximum at
k = √10(

√
15− 3) ≈ 2.9546 whereω = √02+ 120− 2

√
15≈ √02+ 10.5952.

Figure 2 shows dispersion relations for the various approximations to the DSG equation
which are developed above. All give accurate representations for smallk, but none are
accurate as far ask = ±2π . Both (4,2) and (4,0) Padé approximations give an indication of
the existence of a local maximum in the frequency, but neither manage to get tok = ±2π
without giving complex frequencies—indicating that the partial differential equations are
ill-posed in the sense that arbitrarily small linear waves grow in amplitude. The (2,0) Padé
approximation is inaccurate in that it allows arbitrarily large frequencies for linear modes
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Figure 2. The dispersion relation for DSG and each approximation to the DSG equation (with
0 = 0.236).

with large wavenumber. Only the (2,2) Padé approximate predicts that all waves should
have frequencies lying within a band of finite width. In the example shown above, the lattice
allows 0.2366 ω 6 2.01, whereas the (2,2) Padé approximate predicts 0.2366 ω 6 3.47.
However, the periodicity in wavenumber is not well captured, as the (2,2) approximate is
monotonic ink > 0.

3. Static breather solutions of the DSG equation

Having found a variety of PDEs which approximate the DSG equation to varying degrees
of accuracy, we aim to use these to find breather solutions. This will be performed by using
the method of multiple scales from asymptotic analysis. It will be necessary to carry this out
beyond leading order in order to find the effects of discreteness. The leading-order analysis
is commonly used, but to obtain a description of the more subtle aspects of behaviour
higher-order terms are required, and to find these, secularity conditions need to be found
and solved. So although the end results appear straightforward, the analysis leading to them
is non-trivial. Details of the procedure will be explained as encountered.

3.1. Solution to the (4,0) Pad´e equation

The essence of the method of multiple scales is to expand the dependent variable in terms
of an asymptotic series, whilst the independent variable(s) are replaced by a hierarchy of
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‘slow’ variables. Since the PDEs we are interested in have two independent variables (x and
t), we have two hierarchies of slow variables.

Knowing the form of the solution of the purely continuum SG case enables us to reduce
the number of terms we have to consider. The hierarchies of new independent variables
replacingx and t are

t0 = t t2 = ε2t t4 = ε4t . . .

x1 = εx x3 = ε3x . . .
(3.1)

so that thex- and t-derivatives are replaced by

∂

∂t
= ∂

∂t0
+ ε2 ∂

∂t2
+ ε4 ∂

∂t4
+ · · ·

∂

∂x
= ε ∂

∂x1
+ ε3 ∂

∂x3
+ · · · .

(3.2)

Next, we specify the asymptotic series forφ; we make the ansatz that the solution is of the
form

φ = ε ei0t0F1(x1, t2, x3, t4)+ ε3[ei0t0F3(x1, t2)+ e3i0t0G3(x1, t2)]

+ε5[ei0t0F5(x1, t2)+ e3i0t0G5(x1, t2)+ e5i0t0H5(x1, t2)] + · · · + CC. (3.3)

This solution ansatz, together with the multiple-scales expansion (3.2) is substituted into a
small-amplitude expansion of the PDE (2.1)

φtt = −02φ + 1
60

2φ3− 1
1200

2φ5+ φxx + 1
12κφxxxx (3.4)

to find an equation which contains terms in a variety of orders ofε each with a certain
frequency in theO(1) timescale,t0. The extra constantκ has been inserted in front of the
term which is present in an expansion of the DSG equation, but absent from an expansion
of the SG equation. This will ease interpretation of the results at a later stage. In the
ensuing analysis we are thus solving two systems:κ = 1 corresponds to the DSG equation
andκ = 0 to the SG equation.

We obtain six equations from (3.4) by equating the coefficients of each harmonic
frequency at each order ofε

O(ε3 ei0t0):

2i0F1,t2 − 02F3 = −02F3+ 1
20

2|F1|2F1+ F1,x1x1

O(ε3 e3i0t0):

−902G3 = −02G3+ 1
60

2F 3
1

O(ε5 ei0t0):

2i0F1,t4 + F1,t2t2 + 2i0F3,t2 − 02F5 = −02F5+ 1
20

2F 2
1 F̄3+ 02|F1|2F3

+ 1
20

2F̄ 2
1G3+ 1

120
2|F1|4F1+ F3,x1x1 + 2F1,x1x3 + 1

12κF1,x1x1x1x1

O(ε5 e3i0t0):

6i0G3,t2 − 902G5 = −02G5+ 1
20

2F 2
1F3+ 02|F1|2G3+ 1

240
2|F1|2F 3

1 +G3,x1x1

O(ε5 e5i0t0):

−2502H5 = −02H5+ 1
20

2F 2
1G3+ 1

1200
2F 5

1 . (3.5)
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The equation obtained by consideringO(ε ei0t0) terms is automatically satisfied; the
first equation displayed above (fromO(ε3 ei0t0) terms) is the nonlinear Schrödinger (NLS)
equation. The solution we are interested in is

F1 = A ei� e−i0A2t2/8sech( 1
20Ax1+ B) (3.6)

whereA,B and� are real constants of integration which may depend onx3 and t4. Since
this expression contains noκ term, there is no difference atO(ε) between the SG and DSG
breather modes.

We specify that the amplitude of the breather isφ(0, 0) = 2εA exactly; i.e. the
corrections we calculate at the next order will change the shape and temporal behaviour of
the breather, but not alter its amplitude. ThusF3(0, 0, 0, 0)+G3(0, 0, 0, 0) = 0.

The equation from theO(ε3 e3i0t0) terms is interpreted as an algebraic equation forG3

and has the solutionG3 = − 1
48F

3
1 . We shall pass over the equation forF3 from O(ε5 ei0t0)

terms for now, and return to it later; however, we will assume that its solution can be found
so that later equations can be solved in terms ofF3. Solving this equation is the crux of
our analysis.

The equation derived fromO(ε5 e3i0t0) terms is another algebraic equation, this time for
G5

G5 = 1

6402
(F1F

2
1,x1
− F 2

1F1,x1x1)−
1

96
F 2

1F3− 1

256
|F1|2F 3

1 . (3.7)

Finally, from consideration ofO(ε5 e5i0t0) terms, we findH5 = 1
1280F

5
1 .

In this brief run-through of the equations, we ignored terms ofO(ε5 ei0t0)—a much
more complicated equation. Although coming from anO(ε5) part of the DSG expansion,
the equation actually determines theO(ε3 ei0t0) correction toφ, namelyF3. Using the
solution we have already found forG3, the equation can be simplified to

2i0F3,t2 − F3,x1x1 − 1
20

2F 2
1 F̄3− 02|F1|2F3 = 2F1,x1x3 − F1,t2t2 − 2i0F1,t4

+ 1
12κF1,x1x1x1x1 − 3

320
2|F1|4F1. (3.8)

Now we make the substitutionF3 = F1P and note that it is sufficient to consider� andB
of the form� = ω4t4 andB = βx3

0= Px1x1 − Px10A tanh

(
1

2
0Ax1

)
+ 1

4
02A2P

[
1− 2 sech2

(
1

2
0Ax1

)]
+1

2
02A2 sech2

(
1

2
0Ax1

)
(2P + P̄ )− 2i0Pt2 −

1

4
02A2P

+ 1

192
κ04A4

[
1− 20 sech2

(
1

2
0Ax1

)
+ 24 sech4

(
1

2
0Ax1

)]
− 3

32
02A4 sech4

(
1

2
0Ax1

)
+ 0A ∂B

∂x3

[
1− 2 sech2

(
1

2
0Ax1

)]
+ 1

64
02A4+ 20

∂�

∂t4
. (3.9)

Due to the special form of this equation, the solutionP(x1, t2) can be expressed in terms
of a power series in sech2

(
1
20Ax1

)
, with coefficients dependent ont2, namelyP(x1, t2) =∑

n an(t2)sech2n
(

1
20Ax1

)
. This simplification requires the two unknown derivatives∂B/∂x3

and∂�/∂t4 to be constant, hence we defineβ = ∂B/∂x3 andω4 = ∂�/∂t4. Further analysis
reveals that a finite sum—in fact just the first two terms—is sufficient to solve the partial
differential equation exactly. HenceP = a0(t2)+a1(t2) sech2( 1

20Ax1) for suitable functions
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a0(t2), a1(t2) which are yet to be determined. When this is substituted into the above and
the coefficients of powers of sech2( 1

20Ax1) are equated, the resulting system of algebraic
and ordinary differential equations is

0= −2a1(t2)+ 1

2
ā1(t2)− 3

32
A2+ 1

8
κ02A2

0= 2a1(t2)− 2i

0A2

da1

dt2
+ 1

2
a0(t2)+ 1

2
ā0(t2)− 2β

0A
− 5

48
κ02A2 (3.10)

2i

0A2

da0

dt2
= β

0A
+ 1

64
A2+ 1

192
κ02A2+ 2ω4

0A2
.

The secularity condition required by the multiple scales analysis is∂P/∂t2 = 0 which
implies thata′0(t2) = 0 anda′1(t2) = 0. This ensures thatF3 will be periodic in t2 and
not subject to any resonant interactions with earlier terms in the asymptotic expansion.
Thusa0, a1 are constants and not dependent ont2. Hence we now have four constants to
find: a0, a1, β andω4, and so one requires a further equation as (3.10) gives only three
conditions. The final condition comes from our definition ofε described earlier. This states
that φ(0, 0) = 2εA exactly, so the sum of the twoO(ε3) terms cannot alter the amplitude
of the breather. ThusF3(0, 0+G3(0, 0) = 0 and sinceG3 is already known

a0+ a1 = P |x=0 = F3(0, 0, 0, 0)

F1(0, 0, 0, 0)
= −G3(0, 0, 0, 0)

F1(0, 0, 0, 0)
= 1

48
A2. (3.11)

This, together with (3.10), determines all four unknown constants,a0, a1, ω4 andβ

β = − 1
480A

3(1+ 1
2κ0

2) a0 = 1
12A

2(1− κ02)

ω4 = 1
3840A

4(1+ κ02) a1 = − 1
16A

2(1− 4
3κ0

2).
(3.12)

Puttingµ = εA/2, gives the shape att = 0

φn ∼ 4µ sech(%n)[1+ 1
3µ

2(1− κ02) tanh2(%n)]. (3.13)

This agrees with the expansion of the known pure SG breather in the caseκ = 0 and when
κ = 1, gives the corrections caused by the discrete nature of the DSG system. Also we can
obtain the time-dependent solution

ω ∼ 0[1− 1
2µ

2+ 1
24µ

4(1− κ02)] ∼ 0 cosµ− 1
24κ0

3µ4

% ∼ 0[µ− 1
6µ

3(1− 1
2κ0

2)] ∼ 0 sinµ+ 1
12κ0

3µ3

φn ∼ 4µ cos(ωt) sech(%n)[1+ 1
3µ

2{1− cos2(ωt) sech2(%n)− κ02 tanh2(%n)}] (3.14)

which, in the caseκ = 0, agrees with the direct expansion of the known SG breather.
This calculation also shows that discreteness affects the shape of the breather at a lower

order of breather amplitude than it affects the frequency. The frequency corrections are
O(03µ4) whereas shape corrections areO(03µ3). This observation has been made for this
system by use of other approximation methods [13]. A major improvement in the current
results is that we not only predict narrower breathers in a discrete system, as in earlier work,
but we now also find the full shape modification in the small amplitude limit.

3.2. Solution of the (2,2) Pad´e equation

In this section we solve equation (2.3) using a series expansion of the same form as (3.3).
A priori we treat the functionsF1, F3,G3, etc as unknowns, possibly different to those
found in the above section. Ultimately, we will find the same solutions for them as above;
however, intermediate stages of the calculation differ.
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The asymptotic expansion is substituted into the small amplitude expansion of (2.3),
namely

φtt = −02φ + 1
60

2φ3− 1
1200

2φ5+ φxx + 1
12φxxtt + 1

120
2φxx − 1

120
2φ2
xφ − 1

240
2φ2φxx

(3.15)

to give another hierarchy of equations in orders ofε and harmonics of the fundamental
frequency0.

Since we do not requireF5, there is no need to find the otherO(ε5) correction terms,G5

andH5. Thus we shall not quote their determining equations—those obtained by considering
terms of ordersO(ε5 e3i0t0) andO(ε5 e5i0t0).

Separating out the different frequencies (ei0t0, e3i0t0) and different orders ofε produces
the following

O(ε3 ei0t0):

2i0F1,t2 = F1,x1x1 + 1
20

2|F1|2F1

O(ε3 e3i0t0):

−902G3 = −02G3+ 1
60

2F 3
1

O(ε5 ei0t0):

2i0F3,t2 + 2i0F1,t4 + F1,t2t2 = F3,x1x1 + 2F1,x1x3 + 1
20

2F 2
1 F̄3+ 02|F1|2F3+ 1

20
2F̄ 2

1G3

− 1
120

2|F1|4F1− 1
120

2F3,x1x1 − 1
60

2F1,x1x3 + 1
6i0F1,x1x1t2 + 1

120
2F3,x1x1

+ 1
60

2F1,x1x3 − 1
120

2|F1|2F1,x1x1 − 1
240

2F 2
1 F̄x1x1 − 1

60
2|F1,x1|2F1

− 1
120

2F 2
1,x1
F̄1. (3.16)

TheO(ε ei0t0) equation is trivially satisfied. TheO(ε3 ei0t0) equation is the same NLS
equation as was derived in the (4,0) Padé approximation, and so has the same solution (3.6)
as given there. Again theO(ε3 ei0t0) equation gives the higher frequency correction

G3 = − 1
48F

3
1 = − 1

48A
3 e3i�−3i0A2t2/8 sech3( 1

20Ax1+ B). (3.17)

We shall solve theO(ε5 ei0t0) equation to findF3, the O(ε3) correction to the
breather. This equation has marked differences to theO(ε5 ei0t0) equation from the previous
calculation (3.5). For example, we no longer have aF1,x1x1x1x1 term but do have aF1,x1x1t2

term as well as several others not present in (3.5). Fortunately, however, the last equation
of (3.16) is still amenable to solution using the same methods. We writeF3 = F1P where
P = P(x1, t2) is subject to the secularity condition∂P/∂t2 = 0; hence, we shall treatP as
a function purely ofx1 and obtain an ordinary differential equation forP(x1)

2i0PF1,t2

F1
= Px1x1 +

2Px1F1,x1

F1
+ PF1,x1x1

F1
− 2i0F1,t4

F1
− F1,t2t2

F1
+ 2F1,x1x3

F1

+1

2
02|F1|2P̄ + 02|F1|2P − 302|F1|4

32
+ i0F1,x1x1t2

6F1
− 0

2F̄1F1,x1x1

12

−0
2F1F̄1,x1x1

24
− 0

2F1,x1

12F1
(F̄1F1,x1 + 2F1F̄1,x1). (3.18)

As above, a solution of this can be found in terms of a finite power series of
sech2( 1

20Ax1); substitutingP(x1) = a0 + a1sech2( 1
20Ax1) leads to equations fora0,

a1, ω4 and β = ∂B/∂x3, by equating the coefficients of powers of sech2( 1
20Ax1). The

final equation needed for a fully determined system comes from the boundary condition
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P(0) = 1
48A

2, since by our definition ofε, theO(ε3) terms must make no alteration to the
amplitude of the breather:

0= 8ω4

0A2
+ A

2

16
+ 4β

0A
+ 0

2A2

48

0= 8a1+ 2a0− 8β

0A
+ 2ā0− 5

12
02A2

0= −8a1+ 2ā1− 3

8
A2+ 1

2
02A2 (3.19)

1

48
A2 = a0+ a1.

The solution of this system is identical to theκ = 1 case of (3.12). Hence the shape at
t = 0 and the full temporal evolution is identical to that for the (4,0) Padé approximation.

3.3. Solution of the (4,2) Pad´e equation

Finally in this section, for the sake of completeness, we outline a similar calculation for the
complex, but also more accurate (4,2) Padé approximation of the DSG system. The small
amplitude expansion of (2.6) which we aim to solve is

φtt = −02φ + 1
60

2φ3− 1
1200

2φ5+ φxx + 1
30φxxtt + 1

20φxxxx + 1
300

2φxx

− 1
600

2φ2φxx − 1
300

2φ2
xφ. (3.20)

The asymptotic ansatz (3.3) is once again assumed and inserted, and equating coefficients
of powers ofε and harmonics of ei0t0 yields a hierarchy of equations. TheO(ε3 ei0t0) terms
give the NLS equation exactly as in the previous two approximations, and theO(ε3 e3i0t0)

terms also yield the same equation as before (3.17).

Thus the solutions forF1 andG3 are also the same as before withF1 being given by
(3.6) andG3 by (3.17). Terms ofO(ε5 ei0t0) generate a new equation forF3

2i0F1,t4 + F1,t2t2 + 2i0F3,t2 = 1
20

2(F 2
1 F̄3+G3F̄

2
1 + 2|F1|2F3)

− 1
120

2|F1|4F1+ F3,x1x1 + 2F1,x1x3 + 1
20F1,x1x1x1x1 + 1

300
2F3,x1x1

+ 1
150

2F1,x1x3 − 1
600

2(F 2
1 F̄1,x1x1 + 2F1,x1x1|F1|2)+ 1

15i0F1,x1x1t2

− 1
300

2(F̄1F
2
1,x1
+ 2F1|F1,x1|2)− 1

300
2F3,x1x1 − 1

150
2F1,x1x3. (3.21)

Writing θ = 1
20Ax1+ B, andF3 = F1P (as before) we find

−2ω4

0
− A

4

64
+ A

2P

4
+ 2iPt2

0
= 3

2
A2P sech2θ − 3

32
A4 sech4θ

+1

4
A2P(1− sech2θ)− APx1

0
tanhθ + Px1x1

02
+ A

02

dB

dx3
(1− 2 sech2θ)

+ 1

320
02A4(1− 20 sech2θ + 24 sech4θ)+ 1

480
02A4(1− 2 sech2θ)

− 1

80
02A4(3− 4 sech2θ) sech2θ. (3.22)

This has the same solution as in the previous two calculations. The solution forP is
a0(t2) + a1(t2) sech2θ and the secularity conditions area′0 = 0 = a′1 giving a system of
three equations. The final condition is once again due to the definition ofε which implies
that theO(ε3) terms make no contribution to the amplitude of the breather. Thus the final
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solution forF3 is the same as determined from the earlier approximations, and is given by
the above substitutions witha0, a1, β andω4 as specified in (3.12) withκ = 1.

This shows that the three approximating PDEs (2.1), (2.3) and (2.6) all generate the
same breather solution. From this we may deduce that the approximation technique leaves
invariant the underlying nonlinear dynamics of the DSG equation at least in the long
wavelength limit. It has been shown earlier that some of them are more faithful in their
reproduction of the linear dynamics of the discrete system than others.

4. PDE approximations to the generalized Klein–Gordon lattice

In this section we shall analyse the generalized Klein–Gordon equation (1.10) which was
derived in the introduction. First let us perform a minor rescaling of (1.10) and denote the
Taylor series of the nonlinear interaction by

2V ′(φ)+ 4hφ = Ṽ ′(φ) = 02φ(1− γ1φ − γ2φ
2− γ3φ

3− γ4φ
4). (4.1)

Thus the small-amplitude expansion of equation we aim to solve is

φ̈n = (f − h)(φn+1− 2φn + φn−1)+ g(φn+2− 2φn + φn−2)

−02φn(1− γ1φn − γ2φ
2
n − γ3φ

3
n − γ4φ

4
n). (4.2)

The odd symmetry (φ 7→ −φ) present in the DSG equation is destroyed by theγ1, γ3 terms.
This equation is also a generalization of the usual nonlinear discrete Klein–Gordon equation
due to the presence of second-neighbour interactions.

A family of partial differential equations which approximate this can be constructed
using the methods outlined in section 2, namely that of rewriting the system of ordinary
differential equations as an operator equation acting on functions of two continuous
variables. We then approximate the spatial difference operator in terms of a ratio of
polynomials in the differential operator; this yields a simpler equation whose solution
approximates the solution of the original (discrete) system. All of the approximations
we propose initially require the spatial differences to be expanded in a Taylor series

φtt = −Ṽ ′(φ)+ [(f − h)(e∂x − 2+ e−∂x )+ g(e2∂x − 2+ e−2∂x )]φ

= − Ṽ ′(φ)+ (f − h+ 4g)

[
∂2
x +

(f − h+ 16g)

12(f − h+ 4g)
∂4
x +

(f − h+ 64g)

360(f − h+ 4g)
∂6
x

]
×φ +O(∂8

xφ). (4.3)

The various PDEs are generated by using different approximations to the operator in square
brackets. The four simplest approximations are described in the following, together with a
brief description of the behaviour of linear modes to establish which are well-posed.

4.1. (2,0) Pad´e approximation

In our notation, the (2,0) Padé approximate corresponds to the standard continuum
approximation where the discrete second central difference operator is simply replaced by a
second derivative. The resulting partial differential equation is a continuous Klein–Gordon
equation

φtt = (f − h+ 4g)φxx − 02φ(1− γ1φ − γ2φ
2− γ3φ

3− γ4φ
4). (4.4)

Equations of this form have been widely studied, but can oversimplify the dynamics of the
discrete equation. In the specific case of DSG, the standard continuum approximation leads
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to the SG equation—an integrable equation with many properties not shared by the DSG
equation. As another illustration of this we compare the dispersion relation of (4.4)

ω2 = 02+ (f − h+ 4g)k2 (4.5)

with that for the fully discrete model (1.12). The dispersion relation for the full model
occupies a finite band of frequencies, where as this approximation allowsω→∞ for large
wavenumbers.

4.2. (4,0) Pad´e approximation

A simple truncation of the operator expansion (4.3) at fourth order leads to the (4,0) Padé
approximate

φtt = (f − h+ 4g)φxx − Ṽ ′(φ)+ 1
12(f − h+ 16g)φxxxx (4.6)

which is the simplest of the more accurate quasi-continuum approximations. This, however,
has the property that for large wavenumbers its dispersion relation

ω2 = 02+ (f − h+ 4g)k2− 1
12(f − h+ 16g)k4 (4.7)

diverges, and iff − h + 16g > 0, the frequencyω becomes complex implying that the
zero solution of this equation is unstable to high wavenumbers—a property that the discrete
system does not possess in the same parameter range. The extra accuracy that this higher-
order approximation achieves is reflected in that its dispersion relation is closer to (1.12)
for small wavenumbers.

This is the only one of the more accurate approximations which maintains the Lagrangian
and Hamiltonian structure of the original system (1.8). Equation (4.6) can be generated from
the Lagrangian densityL = 1

2φ
2
t − 1

2(f − h+ 4g)φ2
x − Ṽ (φ)+ 1

24(f − h+ 16g)φ2
xx .

4.3. (2,2) Pad´e approximation

An alternative equation can be generated by using the (2,2) Padé approximation to the term
in square brackets in (4.3)

φtt = (f − h+ 4g)φxx − Ṽ ′(φ)+ (f − h+ 16g)

12(f − h+ 4g)
(φxxtt + Ṽ ′′(φ)φxx + Ṽ ′′′(φ)φ2

x). (4.8)

This formally has the same order of accuracy as the (4,0) Padé approximation (4.6), and
has the dispersion relation

ω2 = (f − h+ 4g)02+ (f − h+ 4g)2k2+ 1
120

2k2(f − h+ 16g)

(f − h+ 4g)+ 1
12k

2(f − h+ 16g)
. (4.9)

Provided(f − h + 4g)2/(f − h + 16g) > − 1
120

2, the frequencyω occupies only a finite
band of frequencies between0 and

√
[02+12(f −h+4g)2/(f −h+16g)]. This property is

qualitatively the same as the full dispersion relation (1.12). If(f −h+16g)(f −h+4g) < 0
then the denominator vanishes for some wavenumberkc and the dispersion relation predicts

unstable waves fork
>≈ kc.
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4.4. (4,2) Pad´e approximation

The final approximation we shall consider is formally more accurate than any of the above.
The last two only consider terms up toO(∂4

x ) of the expansion of the original operator
equation (4.3), whereas we shall now include theO(∂6

x ) term as well. The (4,2) Padé
approximate is

φtt = (f − h+ 4g)φxx − Ṽ ′(φ)+
(
(f − h)2+ 8g(f − h)+ 256g2

20(f − h+ 16g)

)
φxxxx

+ (f − h+ 64g)

30(f − h+ 16g)
(φxxtt + Ṽ ′′(φ)φxx + Ṽ ′′′(φ)φ2

x). (4.10)

This approximation also has a dispersion relation which diverges for largek, but only in
the manner ofO(k2) and, not as strongly as the (4,0) Padé approximation which diverges
like O(k4). The dispersion relation for the (4,2) Padé approximation is

ω2 = {(f − h+ 16g)[02+ k2(f − h+ 4g)] + 1
300

2k2(f − h+ 64g)

− 1
20k

4[(f − h)2+ 8g(f − h)+ 256g2]}{(f − h+ 16g)

+ 1
30k

2(f − h+ 64g)}−1. (4.11)

This does not have a finite band of allowable linear frequencies which the system of
ordinary differential equations possesses (1.12). Depending on0 andg, this approximation
to ω2 can remain positive everywhere—demonstrating that there is a suitable well-posed
PDE approximation to the system of ordinary differential equations (4.2).

4.5. Summary of results

The (4,2) Pad́e and (2,2) Pad́e equations are very similar in a number terms: apart from
differences in coefficients, the only difference is the presence of aφxxxx term in the (4,2)
approximate. The set of termsφxxtt + Ṽ ′′(φ)φxx − Ṽ ′′′(φ)φ2

x derived in the (2,2) Padé
approximation introduces extra nonlinearities to the PDE approximation. It is an alternative
correction term to the more commonφxxxx seen in the (4,0) approximate. The (4,2)
approximation combines the two correction terms to form a yet more accurate approximating
equation.

Figure 3 shows the dispersion relation for the lattice withf − h = 1, g = −0.05
and 0 = 0.236, and the dispersion relation for each of the partial differential equation
approximations derived. All are asymptotic to the exact solution in the limitk → 0, but
have wildly differing behaviours fork away from zero.

With the parameters used in the figure, the (4,2) Padé approximation contains
singularities atk = ±√(30/11) ≈ ±1.65. The (4,0) Pad́e approximate predicts the
frequency increasing for ask increases to 5 then decreasing again, vanishing atk ≈ 7. The
PDE is unstable to wavenumbers above this limit. The standard continuum approximation
does not suffer from such a problem, rather it predicts arbitrarily large frequencies for
large wavenumbers, which is again not a property of the lattice. The best qualitative
approximation to the dispersion relation comes from the (2,2) Padé method, whose
frequencies all lie in the range 0.2366 ω 6 6.20, whereas the lattice’s linear frequencies
all lie in the band 0.2366 ω 6 2.01.
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Figure 3. Dispersion relations for the generalized discrete nonlinear Klein–Gordon equation
and PDE approximations to it (with0 = 0.236 andg = −0.05).

5. Breather solution of the generalized lattice

We now aim to use one of the more accurate PDEs—namely the (4,0) Padé approximate—to
find a highly accurate asymptotic approximation to the breather mode of the generalized
discrete nonlinear Klein–Gordon lattice (4.2). When trying to find moving breathers in a
Klein–Gordon equation with quadratic nonlinearity, Peyrard and Bishop [9] used a NLS-type
reduction

φn = F1(εn, εt)ei(kn−ω(k)t) + ε[G2(εn, εt)+H2(εn, εt)e2i(kn−ω(k)t)] + CC (5.1)

whereω(k) satisfies the dispersion relation. The non-oscillatory and second-harmonic terms
on theO(1) timescale,G2 andH2, are necessary to balance the even powers ofφ that occur
in the power series expansion of the nonlinear potential.

We shall use a generalization of (5.1) to find the corrections to a stationary breather
caused by the discrete nature of the underlying spatial dimension. The long time scales
t2, t4 and space scalesx1, x3 are identical to those used in the DSG equation (3.1). Our
higher-order approximation must now include even powers of the fundamental frequency
(ei0t0) at even orders of the small parameterε. Thus we postulate that the solution has the
form of an asymptotic series which is considerably more general than that used previously.
In place of (3.3), we use the ansatz

φ = ε ei0t0F1+ ε2(G2+ e2i0t0H2)+ ε3(ei0t0F3+ e3i0t0J3)+ ε4(G4+ e2i0t0H4+ e4i0t0K4)

+ε5(ei0t0F5+ e3i0t0J5+ e5i0t0L5)+ CC (5.2)

to determine the changes in shape that are caused by the discrete structure underlying our
generalized nonlinear Klein–Gordon lattice. Here, all the quantitiesF1, G2, H2, F3, J3, G4,
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H4, K4, F5, J5 andL5 are functions of (x1, t2, x3, t4), although it will not be necessary for
us to find expressions for all of them.

We shall use the notation12 = f − h+ 4g, 14 = 1
12(f − h+ 16g), in order to write

the equation we aim to solve as

φtt = 12φxx +14φxxxx − 02φ(1− γ1φ − γ2φ
2− γ3φ

3− γ4φ
4). (5.3)

Substituting (5.2) into (5.3) and equating terms of the same order inε and of the same
harmonic (power of ei0t0) leads to the hierarchy of equations

O(ε2 e0i0t0):

0= −02G2+ 02γ1|F1|2

O(ε2 e2i0t0):

−402H2 = −02H2+ 02γ1F
2
1

O(ε3 ei0t0):

2i0F1,t2 = 12F1,x1x1 + 2γ10
2[F1G2+ F̄1H2+ F1Ḡ2] + 3γ20

2|F1|2F1

O(ε3 e3i0t0):

−902J3 = −02J3+ 2γ10
2F1H2+ γ20

2F 3
1

O(ε4 e0i0t0):

0= 12(G2,x1x1 + Ḡ2,x1x1)− 02(G4+ Ḡ4)+ 6γ30
2|F1|4

+γ10
2[2F1F̄3+ 2F̄1F3+ (G2+ Ḡ2)

2+ 2|H2|2]

+3γ20
2[F 2

1 H̄2+ F̄ 2
1H2+ 2|F1|2(G2+ Ḡ2)]

O(ε4 e2i0t0):

−402H4+ 4i0H2,t2 = 12H2,x1x1 − 02H4+ 4γ30
2|F1|2F 2

1

+3γ20
2[F 2

1G2+ F 2
1 Ḡ2+ 2|F1|2H2]

+γ10
2[2F1F3+ 2F̄1J3+ 2G2H2+ 2Ḡ2H2]

O(ε4 e4i0t0):

−1602K4 = −02K4+ γ10
2H 2

2 + 2γ10
2F1J3+ γ30

2F 4
1 + 3γ20

2F 2
1H2

O(ε5 ei0t0):

2i0F3,t2 + F1,t2t2 + 2i0F1,t4 = 12F3,x1,x1 + 212F1,x1x3 +14F1,x1x1x1x1 + 10γ40
2|F1|4F1

+4γ30
2[F 3

1 H̄2+ 3|F1|2F1(G2+ Ḡ2)+ 3|F1|2F̄1H2]

+3γ20
2[F1(G2+ Ḡ2)

2+ 2F̄1H2(G2+ Ḡ2)

+2|H2|2F1+ F̄ 2
1J3+ F 2

1 F̄3+ 2|F1|2F3]

+2γ10
2[F1(G4+ Ḡ4)+ F̄1H4+ F̄3H2+ F3(G2+ Ḡ2)+ H̄2J3]. (5.4)

In such a reduction, theO(ε ei0t0) term is trivially satisfied; the twoO(ε2) terms and
O(ε3 e3i0t0) term imply

G2 = γ1|F1|2 H2 = − 1
3γ1F

2
1 J3 = 1

24(2γ
2
1 − 3γ2)F

3
1 . (5.5)

However, theO(ε3 ei0t0) term is not so simple: this now reduces to

2i0F1,t2 = 12F1,x1x1 + 1
30

2(10γ 2
1 + 9γ2)|F1|2F1. (5.6)
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In the DSG expansion we had12 = 1, γ1 = 0, γ2 = 1
6, so that both the terms on the right-

hand side had positive coefficients. Now we wish to consider the additional possibilities
of 12 being negative, and/orγ2 < − 10

9 γ
2
1 . There are two distinct types of solution: the

bright soliton, which we have already encountered, occurs when the two coefficients have
the same signs. This can be written

F1 = A ei� e−i0A2(10γ 2
1+9γ2)t2/12 sech

(
0Ax1

√
10γ 2

1 + 9γ2

612
+ B

)
. (5.7)

The new phenomenon occurs when the sign of the nonlinearity is opposite to that of the
dispersive term: then the dark (or ‘hole’) soliton solution occurs. In its simplest form this
solution is

F1 = A e−iA2t2/2120 tanh

(
0Ax1

−(10γ 2
1 + 9γ2)

612

)
. (5.8)

A more general solution is given in Remoissenet [8]. This solution does not induce breather-
type solutions in the lattice equation (4.2); hence we shall concentrate on the bright soliton
for the remainder of our calculations.

OnceF1 has been found,G2, H2 andJ3 are fully determined by (5.5). We proceed to
find F3, G4, H4 andK4 by simplifying the algebra with the substitutionF3 = F1P . The
O(ε4) terms from (5.4) imply

G4 = 12γ1

02
(|F1|2)x1x1 + γ1(P + P̄ )|F1|2+

(
3γ3+ 5γ1γ2+ 19

9
γ 3

1

)
|F1|4

H4 = 212γ1

902
(F 2

1,x1
− F1F1,x1x1)−

2

3
γ1F

2
1P −

(
4

3
γ3+ 31

12
γ1γ2+ 59

54
γ 3

1

)
|F1|2F 2

1 (5.9)

K4 =
(

1

12
γ1γ2− 1

15
γ3− 1

54
γ 3

1

)
F 4

1 .

The equation from theO(ε5 ei0t0) terms provides an equation forP

2i0(F1P)t2 + 2i0F1,t4 + F1,t2t2 = 12(F1P)x1x1 + 212F1,x1x3 +14F1,x1x1x1x1

+10γ40
2|F1|4F1+ 56

3 γ3γ10
2|F1|4F1+ ( 107

12 γ
2
1 γ2− 3

8γ
2
2 )0

2|F1|4F1

+3γ20
2|F1|2F1(P̄ + 2P)+ 10γ 2

10
2|F1|2F1P

+( 335
54 γ

4
1 + 179

12 γ
2
1 γ2+ 28

3 γ3γ1)0
2|F1|4F1

+γ 2
1A

2F1(10γ 2
1 + 9γ2)(

2
27 sech4θ + 4

3(2 sech2θ − 3 sech4θ)) (5.10)

whereθ = 0Ax1

√
(10γ 2

1 + 9γ2)/612 + βx3. As in the approximation to breathers in the
DSG equation, it is sufficient to seek a solution forP in the form of a finite series in powers
of sech2θ ; in fact just two terms are required:P = a0(t2)+a2(t2) sech2(θ) with a0, a2 ∈ R.
The secularity conditions are∂P/∂t2 = 0 which implies thata′0(t2) = 0 = a′2(t2). This
leaves four constants to determine:a0, a2, β, ω4. Three of the four equations come from
equating powers of sech2(θ) in the above equation (5.10). The fourth is generated when we
specify that theO(ε3) terms should not generate any extra contribution to the amplitude of
the breather (that is at the pointt = 0= θ ). This condition reduces to

a0+ a2+ 1
24A

2(2γ 2
1 − 3γ2) = 0. (5.11)
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The solution of this system of four equations is

a0 = −A2

18(10γ 2
1 + 9γ2)

[
12140

2(10γ 2
1 + 9γ2)

2

12
2

+180γ4− 27γ 2
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2
1 + 504γ1γ3− 580γ 4

1

]
a2 = A2

72(10γ 2
1 + 9γ2)
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48140

2(10γ 2
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2
1 + 2016γ1γ3− 2380γ 4

1

]
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12
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−4032γ1γ3− 1440γ4− 351γ 2
2 − 4140γ2γ

2
1 − 1180γ 4

1

]
. (5.12)

Knowing the values of these parameters now enables us to write a highly accurate
approximation to the breather in closed form. We now quote our results in the original
variablesx and t using (3.1):

φ = 2εA sech(θ)[cos(ωt)+ εAγ1{1− 1
3 cos(2ωt)} sech(θ)+ ε2{(a0+ a2 sech2(θ)) cos(ωt)

+ 1
24A

2(2γ 2
1 − 3γ2) sech2(θ) cos(3ωt)}] (5.13)

where

ω = 0 − 1

12
0ε2A2(10γ 2

1 + 9γ2)+ ε4ω4 θ =
(
0A

√
10γ 2

1 + 9γ2

612
+ βε2

)
εx. (5.14)

It is the terms involving14 which are introduced as a consequence of treating the
discreteness correctly in higher-order terms. The terms influenced are the frequencyω,
the space scaleθ and more generally the shape of the breather solution througha0 anda2.
The exact size of these effects depends on the parametersγ1, γ2, f , h andg.

As an example of our method, let us apply this approximation to the model of DNA
denaturation proposed by Peyrard and Bishop [9]. They assume the nonlinear interaction
term has the form of a Morse potentialV (φ) = D(e−aφ − 1)2. A Taylor expansion of this
leads to the choice of parameters

γ1 = 3
2 γ2 = − 7

6 γ3 = 5
8 γ4 = − 31

120 (5.15)

which we use in plotting a figure of a stationary breather.
Figure 4 shows the difference which the inclusion of cubic terms in the asymptotic

expansion makes to the shape of a breather in a discrete generalized nonlinear Klein–Gordon
equation. The top curve is the expansion up toO(ε3) which we have derived here (5.13),
the second curve is theO(ε2) approximation and the smallest positive curve represents the
leading-order approximation. Att = π/ω the variableφ takes its most negative values:
the leading-order expansion is the one which is most negative atx = 0. The two-term
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Figure 4. Plots of approximations to the breather att = 0 andt = π/ω for the approximation
up to third order inε, up to second order, and the leading order term. The leading order term
is exactly±0.2 at x = 0. The uppermost curve is theO(ε3) approximation which att = π/ω
starts at−0.18 (whenx = 0) and crosses the leading order term atx = 30. The two-term
approximation is the least negative of the curves att = π/ω and whent = 0 lies between the
two positive curves. The parameter values used areε = 0.1, 0 = 0.236, A = 1.0, f = 1,
h = 0, g = −0.05, γ1 = 1.5, γ2 = −1.166 67,γ3 = 0.625 andγ4 = −0.258 33.

approximation is least negative, and theO(ε3) approximation is coincident with theO(ε2)

expansion atx = 0, but then crosses the leading-order approximation and for largerx values
is more negative than either of the others.

6. Discussion

In this paper we have shown how to calculate the differences that discreteness makes
to the shape of a breather in a DSG lattice and in a general nonlinear Klein–Gordon
lattice. The methods used have required the derivation of highly accurate quasi-continuum
approximations using Padé approximates to rewrite the discrete difference operator in terms
of spatial derivatives. This enables the system of coupled ordinary differential equations
to be approximated by a single PDE which has the form of a perturbed continuum Klein–
Gordon equation. This, in turn is solved by using multiple time scales to derive a hierarchy
of perturbed nonlinear Schrodinger equations. The solution of these requires the imposition
of secularity conditions. In general, breather modes do not form exact solutions to perturbed
sine–Gordon equations, but they are observed to be extremely long-lived oscillations.
Detailed knowledge of the breather’s form is thus crucial to the understanding of the large-
time evolution of such systems.

In sections 2 and 3 we have analysed the DSG equation using quasi-continuum
expansions and multiple-scales techniques. The usual continuum expansion, which keeps
only the first two spatial derivatives, is solved using two time scales and one length scale and
leads to the same solution as for the stationary breather in the SG system. Only when the
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breather moves does the lattice structure underlying the DSG system cause any difference
to the shape of the breather at leading order—these leading-order effects were found by
Remoissenet [7].

The analysis presented here extends the leading-order results by calculating the
correction terms in the asymptotic expansion and showing how to calculate successive
terms. To calculate the first correction term three time scales and two space scales are
required. We have shown how to find and impose the secularity conditions necessary for
these higher-order expansions to be solved. Differences between stationary breathers in
the DSG and SG systems are then revealed. Our results agree with previous observations
of breathers in the DSG system [13], namely that discreteness causes an increase in the
frequency of oscillation and a reduction in the width of the breather if the height is kept
the same in the two scenarios (DSG and SG).

PDEs from which these results were obtained were derived from the differential-
difference equation by forming Padé approximations of the discrete difference operator
in the manner used in earlier studies of lattice dynamics [10–12]. Various forms of Padé
approximation all lead to the same expansion for the breather, but exhibited differences
in their approximation of the dispersion relation for small amplitude linear waves. The
standard quasi-continuum approximation (corresponding to a (4,0) Padé approximate) has
the unfortunate property of predicting an instability at large wavenumbers. The (4,2) Padé
approximate is more accurate than (4,0) at small wavenumbers but has the same singularity
at larger wavenumbers. The best qualitative approximation of the dispersion relation is
obtained by using the (2,2) Padé approximation which assigns real and finite frequencies to
all wavenumbers—as the discrete dispersion relation does. However, the band which the
predicted frequencies lie in is somewhat broader in the (2,2) Padé approximation than for
the exact solution.

Although all of the more accurate quasi-continuum approximations have yielded the
same breather solution, the behaviour of small-amplitude linear waves is seen to differ.
This is indicative of possible wider differences in the systems; for example, the manner
in which breathers interact with each other, or with kinks, or with small-amplitude linear
waves could also differ. This is particularly important since it is known that the DSG
equation is not integrable and so the nonlinear modes (breathers and kinks) do not travel
freely through the lattice—rather they shed radiation in the form of small-amplitude linear
waves into the lattice. Analysis of the dynamics of such interactions needs to be undertaken
with great care since simple continuum approximations such as the SG and the (4,0) Padé
approximation are not the best available if one aims to analyse interactions of nonlinear
modes using continuum techniques.

The Pad́e approximation technique was then applied to a generalized discrete nonlinear
Klein–Gordon lattice with non-symmetric potential. This was derived from a coupled chain
model with second-neighbour interactions and diagonal interactions between the two chains.
Again the (2,2) Pad́e approximate gave qualitatively the best approximation to the dispersion
relation of the lattice.

The nonlinear quasi-continuum PDE was solved using multiple-time-scale asymptotics,
again with three time scales and two space scales. In this more complicated model,
as in the simpler DSG case, the leading-order calculation of a static breather shows no
differences in dynamics or shape from a continuum breather. As with modified KdV
equations [4], differences are found at a higher order, and the analysis presented here
enables alterations to the frequency and spatial shape to be calculated. After deriving
and imposing the necessary secularity conditions, higher-order explicit approximations
for the breather modes were derived. The advantage which this method has over the



3322 J A D Wattis

variational methods used earlier [13] is that the current method determines the differences
in shape caused by the discrete nature of underlying space dimension. The price we
pay is that the solutions generated here are valid only in the small-amplitude limit,
so they are unlikely to provide an explanation for the pinning of the large-amplitude
breathers.

One question which this analysis does help to answer is ‘could breathers exist in a
lattice where the parameter12 = 0?’ This could occur if second-neighbour interactions
were competitive (g < 0), which would imply14 < 0 and hence the stability of the zero
solution. The dispersion relation is then very flat neark = 0, sinceω2 ∼ 02 + O(k4),
but there still exists a band of frequencies below the linear waves. However, our analysis
shows that breathers of the expected form are not possible as the limit12→ 0 in (5.12) is
clearly singular. In a more rigorous analysis of the possible existence of breathers in this
lattice, we consider other scalings for the variablesx1, t2 . . . , the correct scalings are then
x1 = ε1/2x, t2 = ε2t , which yields the equation

2i0F1,t2 = F1,xxxx +K|F1|2F1 (6.1)

in place of the NLS equation atO(ε ei0t0). A search for separable solutions to this equation
suggests that there are no solutions which decay asx →±∞.

Our generalization of the discrete nonlinear Klein–Gordon equation allows a novel type
of breather solution. In cases where12 < 0 the dispersion relation shows that the wave
with numberk = 0 has a frequency which is a local maximum. Thus there is no frequency
gap below this but nonlinear waves with a larger frequency are possible.

If g < 0 then12 = f − h + 4g < 0 automatically implies14 = f − h + 16g < 0
and so the instability caused by the negative coefficient of the second spatial derivative is
stabilized by the presence of a negative fourth derivative. Provided that02 > −12

2/4g and
02 > 16g− 412, the system of ordinary differential equations is stable in the sense that all
wavenumbers have real frequencies. The more accurate quasi-continuum approximations
then give well-posed PDEs even though the standard continuum approximation is ill-
posed. If γ2 < − 10

9 γ
2
1 then the resulting nonlinear Schrödinger equation has a bright

soliton solution and the breather’s frequency lies aboveω0 = 0. (The case of12 < 0
with g > 0 is less likely to occur as this requiresh > k which implies that an atom’s
interaction with a neighbouring atom is stronger if the atom is on the other chain.) It may
be argued that breather modes above the dispersion relation have more in common with
‘gap solitons’ than breathers, but in our case there is no optical branch of frequencies above
the region where solitons exist. Whether such modes are exact solutions of the kinetic
equations remains an open problem as does their stability; if they are proven to exist,
there is then the question of what happens to this branch of solutions as the amplitude is
increased.

In summary this paper has addressed the question of finding highly accurate
approximations to stationary breathers in Klein–Gordon chains. The reason for concentrating
on stationary breathers is that the standard continuum approximation reveals no difference
between breathers in the continuous and discrete versions of these modes. The more detailed
calculations carried out here reveals the differences which an underlying discrete spatial
structure imposes on the shape of breathers. The calculations require a multiple-scales
analysis, which we have generalized from well known leading-order calculations carried
out previously. When higher-order correction terms are required, secularity conditions need
to be imposed, and here we have found the necessary conditions and solved the resulting
equations. In applying the techniques to two coupled chains with generalized interactions,
we have uncovered some new and intriguing phenomena.
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